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The concurrent-chains procedure has been used to measure how choice depends on various aspects of
reinforcement, such as its delay and its magnitude. Navarick and Fantino (1972, 1974, 1975) have
found that choice in this procedure can violate the condition of stochastic transitivity that is required
if a unidimensional scale for reinforcements is to be possible. It is shown in this paper that two simple
unidimensional models of choice on concurrent chains can produce violations of stochastic transitivity.
It is argued that such violations may result from the complex contingencies of the concurrent-chains
procedure.
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Navarick and Fantino (1972, 1974, 1975)
showed that relative allocation on concurrent
chains can violate stochastic transitivity. In this
paper I consider various models of choice when
terminal links differ in terms of magnitude and
delay. It is shown that two relatively simple
models can produce such violations. Navarick
and Fantino have argued that their results in-
dicate that there is no unidimensional scale
that can predict choice probabilities. Because
my models are based on a unidimensional scale,
I argue that although choice behavior on con-
current chains does sometimes satisfy the for-
mal definition of a violation of stochastic tran-
sitivity, this may be a consequence of the
complex contingencies of the concurrent-chains
procedure. It may be possible to find a uni-
dimensional scale that characterizes reinforce-
ments in terms of their magnitude and delay.

DEFINITIONS
The Concurrent-Chains Procedure

In the concurrent-chains procedure an an-
imal can make responses on one of two si-
multaneously available initial links. Responses
on these links are reinforced, not by direct
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access to food, but by access to a terminal link
that provides a certain amount of food after a
certain delay. Once a response on one initial
link provides access to a terminal link, the
initial link of the other alternative becomes
inoperative until the terminal links is com-
pleted. Further details and examples can be
found in Fantino (1969, 1977) and Navarick
and Fantino (1972, 1974, 1975, 1976).

In this paper I designate the two alternatives
or sides by the subscripts 1 and 2. The initial
links are independent variable-interval (VI)
schedules with rates XI and X2 (i.e., 1/XA and
1/X2 are the programmed schedule intervals).
Thus, a VI 60 s means that X = 1/60 per
second. The terminal links are characterized
by their delay to reinforcement, D, and by their
magnitude of reinforcement, M. In general,
these delays and magnitudes can be random
variables, but for simplicity I will consider
them to have no variability. The model pro-
posed by Killeen (e.g., Killeen, 1982) explicitly
incorporates variability in the terminal links,
and can be used as the basis for further ex-
plorations of violations of stochastic transitiv-
ity.
To summarize the notation, the initial link

on Side 1 provides access to a terminal link
with delay D1 and reinforcement magnitude
M,, and the initial link on Side 2 leads to a
terminal link with delay D2 and reinforcement
magnitude M2. The proportion of time spent
on the initial link on Side 1 is denoted by p.
A chain is an initial link and a terminal link,
and hence is specified by the three parameters

323

1991, 55, 323-335 NUMBER 3 (MAY)



ALASDAIR HOUSTON

Xi, Mi and Di. When XI = X2, the common value
is denoted by X.
The proportion of time spent (or responses

made) on an initial link is known as the ani-
mal's relative allocation. It is also sometimes
called "preference" (e.g., Green & Snyder-
man, 1980; Killeen, 1968; Navarick & Fan-
tino, 1972), which suggests that it is a measure
of the animal's preference for the terminal links.
Fantino (1969) showed that, for given terminal
links, relative allocation depends on the initial
links. This means that relative allocation is not
measuring only the reinforcement value of the
terminal links.

Stochastic Transitivity and Related Concepts
Let a, b, c, ... be possible terminal links,

and let p(a, b) be the relative allocation to the
initial link leading to a when the terminal links
are a and b. Behavior satisfies strong stochastic
transitivity (SST) if

p(a, b) - 0.5 and p(b, c) 2 0.5
imply p(a, c) 2 max [p(a, b), p(b, c)]. (1)

Behavior satisfies weak stochastic transitivity
(WST) if

p(a, b) 2 0.5 and p(b, c) ' 0.5
imply p(a, c) - 0.5. (2)

Behavior satisfies the substitutability condi-
tion if

p(a, c) > p(b, c) implies p(a, b) > 0.5 (3)
and

p(a, c) = p(b, c) implies p(a, b) = 0.5. (4)
Tversky and Russo (1969) showed that SST

is equivalent to substitutability. It follows that,
if behavior violates the substitutability condi-
tion, SST cannot hold. Tversky and Russo also
showed that SST is equivalent to simple scal-
ability. Behavior satisfies simple scalability if
there exist real-valued functions F and u such
that, for all a, b in the set of possible terminal
links,

p(a, b) = PIu(a), u(b)], (5)
wvhere F is strictly increasing in its first ar-
gument and strictly decreasing in its second
argument.

Simple scalability is closely related to the
idea of a unidimensional model of choice. If
alternatives can vary in more than one attri-
bute, a unidimensional theory involves com-
bining these attributes into a single dimension

that determines choice. In contrast, a multi-
dimensional theory does not combine the at-
tributes but keeps them separate. For example,
let the alternatives differ in terms of reward
magnitude and associated delay. A unidimen-
sional theory would combine these attributes,
perhaps into some sort of ratio of magnitude
divided by delay. A possible multidimensional
theory might say that choice is made on the
basis of magnitude if the relevant difference
exceeds a critical value. If it does not, then the
choice is made on the basis of delay. This "lex-
icographic semiorder" is able to produce vio-
lations of transitivity (see Tversky, 1969, for
further discussion).
The aim of this paper is to investigate the

implications of violations of stochastic transi-
tivity on concurrent chains for theories of
choice. The findings of Navarick and Fantino
can be summarized as violations of SST but
not of WST. In response to such results, Na-
varick and Fantino suggest that the direction
of choice may be predictable by unidimen-
sional theories, but exact choice probabilities
may require multidimensional theories. I ar-
gue that there is another possibility. Unidi-
mensional theories may be able to predict exact
choice probabilities (and also produce viola-
tions of SST).

MODELS THAT CANNOT
RESULT IN VIOLATIONS OF

SST
If

p(a, b) = u(a)u(a) + u(b) (6)

("strict utility"; Luce & Suppes, 1965), then
simple scalability holds, and hence behavior
cannot violate SST. This conclusion still holds
if u(a) depends not only on a but also on the
initial link that leads to it, and u(b) depends
not only on b but also on the initial link that
leads to it. The implication is that any uni-
dimensional theory that assigns a single num-
ber to a terminal link or even to a chain and
then uses a rule of the form shown in Equation
6 cannot produce violations of SST.

The Models of Killeen and Vaughan
In this section the models proposed by Kil-

leen (1982) and Vaughan (1985) are used to
illustrate the above definitions. The models
also give us an indication of why SST might
not hold. Killeen's Equation 7 is
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Bl/(Bl + B2) = Sl/(Sl + S2), (7)
where the left-hand side is the relative rate of
responding and the right-hand side is the rel-
ative strength of the chains. If we assume that
B1/(B1 + B2) = p and that Si depends only on
the parameters of side i, then it is clear that
Equation 7 is of the same form as Equation
6; therefore, SST cannot be violated. The cru-
cial issue is what determines Si. Killeen (1982)
says that the strength, S, of a schedule is
given by
S = Kp(exp(-Kqt/M) + 1/t)/(IL + T) (8)
where KP and K are constants, t is the time
from the start od the terminal link until re-
inforcement, T is the duration of the terminal
link and IL is the duration of the initial link.
(Killeen's p, q, and I have been changed to KP,
Kq, and IL to avoid clashes with the notation
used in this paper.) If more than one reinforcer
is delivered in the terminal link, or if the end
of the terminal link occurs after the end of
reinforcement, then t :# T (Killeen, 1982, p.
219). For the schedules considered here, t =
T. Adopting the notation of this paper, we have

Si = KP (exp(-KqDi/Mi) + l/Di)/
(ILi + Di).

based on the equalization of the value of the
two keys in the concurrent-chains procedure.
The model is an extension of the principle of
melioration (Herrnstein & Vaughan, 1980;
Vaughan, 1982) that results in a form of
matching at equilibrium. Vaughan works with
the concept of the value of a key, which is
taken to be its strength as a conditioned re-
inforcer. In a concurrent-chains procedure,
Vaughan considers value at three points on a
given side. V3 is the value of reinforcement at
the moment that it is presented, V2 is the value
of entering the terminal link, and VI is the
value of the initial link. Any given value de-
pends on the next value in the sequence and
on the rate of transitions to the next stage.
Vaughan (1985) develops an equation for al-
location, based on linear VIs on the initial
links. (On a linear VI, the local rate of rein-
forcement is equal to the programmed rate
divided by the proportion of time spent on the
VI.) Vaughan's equation cannot predict vio-
lations of SST. Vaughan (1985, Appendix 3)
gives the following equations for the value VlL
and VlR of the left and right initial links:

VlL = [(RL/tL) V2L]/[(RL/tL) + a]
VlR = {[RR/(1 - tL)]V2R}/

{[RR/(1 - tL)] + a}(9)

(10)

(11)
The only way in which this strength might
depend on the parameters of the other chain
is through IL. Killeen (1982, p. 219) says that
when there are large differences in the number
of entries into terminal links, IL for a given
side must be calculated by dividing the total
obtained time in the initial links by the number
of entries into the terminal link on that side.
This means that ILi can depend on behavior
and because behavior may depend on all the
parameters, IL, may depend on the terminal
link on the other side. To summarize, if IL,
depends on just the parameters on side i, then
behavior cannot violate SST, but if IL- depends
on the parameters of the other side, then it is
possible for SST to be violated.

In the modified version of incentive theory
presented by Killeen and Fantino (1990), Kq
is replaced by a term that is proportional to
1/T, where T is the average time between
reinforcements. As will be seen from Equation
30, T depends on D, and D2, and hence S,
involves D2 and S2 involves DI, so that Equa-
tion 7 is not of the same formation as Equa-
tion 6.
Vaughan (1985) presents a model of choice

where tL and 1 - tL are the relative times on
the left and right initial link, respectively, RL
= number of transitions per second pro-
grammed on the left concurrent schedule, RR
= number of transitions per second pro-
grammed on the right concurrent schedule, V2L
= value of left terminal link on entering it,
V2R = value of right terminal link on entering
it, and a is a positive constant, whose value
depends on whether the terminal links are FIs
or VIs (see Vaughan, 1985, p. 390). (I have
used a where Vaughan uses a to avoid con-
fusion with the use of a for a terminal link in
this paper.)
The equilibrium matching condition is

VlL = VIR- (12)

In the notation of this paper, tL corresponds
to p and RL and RR correspond to X1 and X2,
so with the assumption that XA = X2 = X, Equa-
tions 10 to 12 give

V2L _ V2R
X + pa X + qa

(13)

where q = 1 - p. To simplify the notation, I
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will write VL and VR for V2L and V2R, re-
spectively. Now put a standard terminal link
on the left side and determine a terminal link
on the right side that results in a certain al-
location p to the left side. From Equation 13

VL = VR(X + pa)/(X + qa). (14)
From Vaughan's definitions of value, the mag-
nitude and delay associated with a given ter-
minal link enter the model only by way of the
relevant V. Thus, from Equation 14 all ter-
minal links that produce a given value of p
against a standard terminal link with value VL
have the same value. It follows that when any
two such terminal links are used in a test of
substitutability, the relative allocation will be
.5. (Appendix 1 outlines a different experi-
mental context in which Vaughan's model
could result in violations of SST.)
To investigate whether linear VIs on the

initial links are crucial for this result, we can
attempt to generalize the above argument. The
terms RL/tL and RR/(1- tL) in Equations 10
and 1 1, respectively, are the rates of entry into
terminal links on the left and right side, given
that the initial VIs are linear. Let rL (XL, B)
and rR (XR, B) be the corresponding general
terms for independent VIs, where the vector
B specifies behavior on the initial links. If be-
havior is uniquely specified by the relative al-
location, p, then the argument carries through
as before. If behavior is not uniquely specified
by p, we can change behavior while holding p
fixed. For example, assume that the animal
spends a time i, on the initial link of side i.
Then p = c1/Ak1 + 02) and the stay times 41
and k2 can change while the relative allocation
p remains constant. In such a case the above
arguments breaks down. Equation 13 must
now be replaced by

rL(XL, B) VL rR(XR, B)VR
rL(XL, B) + a rR(XR, B) + aC

Now imagine that we have a fixed terminal
link on the left side with value VL. We select
a delay for the terminal link on the right side
and seek a magnitude for the terminal link on
the right side, such that a given allocation to
the left side (sayp = .2) results. The magnitude
and the delay determine VR. We then select
another delay for the terminal link on the right
side and seek another magnitude that results
in an allocation of .2 to the left side. If the
subject achieves this allocation by the same
behavioral vector as in the first case, then VR

will be the same in both cases. It is possible,
however, for the subject to produce an allo-
cation of .2 by means of a different behavioral
vector. As a result, VR may be different in the
two cases.
The model of Killeen (1982) has suggested

that if duration of the initial link on one side
is dependent on the parameters of the other
side, then Equation 6 does not necessarily hold;
thus, a violation of SST might be possible. The
failure to find violations of SST in Vaughan's
(1985) model might be a result of his general
principle for allocation or his use of linear VIs
on the initial links to derive an explicit equa-
tion. To clarify this issue, the first model in
the next section keeps Vaughan's linear VIs
but changes the form of the equalization prin-
ciple that determines allocation.

UNIDIMENSIONAL MODELS
THAT CAN VIOLATE SST

In this section I describe two unidimensional
models that can produce violations of SST.
The method that I adopt is based on the ex-
perimental procedure of Navarick and Fantino
(1975). They did not investigate transitivity
directly; instead they investigated the equiva-
lent condition of substitutability. Substitut-
ability requires that both Equation 3 and
Equation 4 hold. Because I am interested in
establishing that substitutability does not hold,
it is only necessary to show that one of these
equations does not hold. I concentrate on
Equation 4. This equation can be given the
following interpretation. Consider a concur-
rent-chains experiment involving terminal links
a and c. The resulting relative allocation to the
link leading to a is p(a, c). Now, a new ex-
periment is performed in which one terminal
link (c) is unchanged, but the other is changed
until some terminal link b is found such that
p(b, c) = p(a, c). In other words, preference
for b against c is the same as preference for a
against c. Equation 4 requires that if a and b
are equally preferred to c, then a subject should
be indifferent between them. This require-
ment is natural if relative allocation is a mea-
sure of the value of the terminal links; if a and
b are equivalent in terms of choice against c,
then they should have the same value and p(a,
b) should be .5. Navarick and Fantino followed
the above procedure and found that pigeons
were not necessarily indifferent between
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equivalent terminal links. In a similar vein,
for each model considered below, I find not
just two but seven terminal links that are
equivalent in terms of choice against a given
terminal link. (This terminal link has a re-
inforcement magnitude of 1 and a delay of 30.)
Substitutability requires that p = .5 when any
two of these seven terminal links are presented
against each other (see Equation 4). I show
that substitutability does not hold, and thus,
by the result of Tversky and Russo (1969),
SST and simple scalability do not hold.

Two Models Based on a Version of Matching
This section develops two models in which

the allocation on the initial links is determined
bv a requirement that a form of local rein-
forcement rate on each chain is equal. To be
more specific, the magnitude of reinforcement
on a side, divided by the sum of the time in
the initial link and the time in the terminal
link, is taken to be the local reinforcement rate.
It can thus be thought of as a form of matching
(see Herrnstein, 1970; Vaughan, 1985).
Vaughan (1985) derived his equations on the
basis of linear VIs in the initial links. The first
model is based on this case, and the second
model uses standard VIs. It turns out that the
first model is actually a special case of the
second model.

Linear VIs. Vaughan (1985) defines a linear
VI as a VI on which the local rate of rein-
forcement is equal to the programmed rate
divided by the proportion of time spent on the
schedule. Thus, on a concurrent-chains pro-
cedure in which the initial links are linear VIs
with programmed rates X1 and X2, the rate of
entry into terminal links on Side 1 is X1/p and
the corresponding rate on Side 2 is X2/q, where
p is the relative allocation to Side 1 and q =
1 - p is the relative allocation to Side 2. In-
stead of adopting Vaughan's assumption about
value, I will assume that what is equalized is
a local rate based on reward magnitude divided
by an overall time composed of time on an
initial link plus delay imposed by the terminal
link. For a period of time, Wp, spent on the
initial link on Side 1, the expected number of
terminal links obtained on Side 1 is WX1, so
the expected reinforcement if M1 WX1 and the
expected delay is D1WX1. This gives a local
rate on Side 1 of

M1X1
p + D1Xl

which reduces to X1/p when D, = 0 and Ml
= 1.
An analogous expression holds for the local

rate on Side 2. Equating these rates gives

M1X1 _M2X2
p + D1IX q + D2X2 (16)

Substituting 1 - p for q in Equation 16 we
find that, when X1 = X2 = X,
p = (M1 + X(MlD2 - M2D,))/(M1 + M2).

(17)

Equation 16 can also be used to determine
a set of terminal links that all result in a certain
allocation p to the initial link on Side 1. (In
developing the theoretical argument, p and p(a,
b) will be used for the allocation that results
in an experiment with a given set of param-
eters, whereas p and qc = 1 -p will be used
to denote a designated value of allocation that
is used in determining a set of equivalent ter-
minal links.) From Equation 16,

D2= (M2/M1)(fi/X + D1) - q/X. (18)
To determine a set of equivalent terminal

links from Equation 18, it is necessary to choose
a standard terminal link on Side 1 (this is the
link denoted by c in Equation 4) together with
a value of p. Let the standard terminal link
have a magnitude of 1 and a delay of 30, and
let the allocation p on the initial link leading
to this terminal link be .2. Then Equation 18
tells us that if the magnitude on the other
terminal link is 2, then, when X = 1/60, the
delay on this side must be 2(12 + 30) - 48
= 36. Similarly, if the magnitude on this side
is 4, then the delay must be 120. A further
five terminal links are listed in Table 1 in the
column headed I = 0. Equation 18 means that
D2 increases by a constant amount for a given
increase in M2; this feature can be seen from
the table. In other words, indifference curves
of magnitude and delay are straight lines. All
of the terminal links in the table are equivalent
in terms of allocation in an experiment in which
the other link has a magnitude of 1 and a delay
of 30. Thus, we can test Equation 4 by letting
a and b be any two terminal links from this
set. If Equation 4 is to hold, putting a on one
side and b on the other side must result in p
= .5. Equation 4 can thus be checked by calling
one member of the set M1 and D1 and another
M2 and D2 and then using Equation 17. Al-
ternatively, we can develop an explicit equa-
tion for the allocation when two equivalent

327



ALASDAIR HOUSTON

Table 1

Violation of SST when choice is determined by a form of
matching (Equation 25). A set of equivalent pairs M2, D2.
All members of the set result in an allocation of .2 to Side
1 when Ml = 1 and D, = 30; A = 1/60. The first D2
column is for linear VIs on the initial links, Equation 18,
which corresponds to I = 0 in the general model. The
second D2 column is for independent VIs with Markov
switching, I = 4 (Equation 29).

D2 D2
M2 (I(= 0) (I= 4)

2 36 41.25
4 120 131.25
6 204 221.25
8 288 311.25
10 372 401.25
12 456 491.25
16 624 671.25

terminal links a and b are used. We find this
allocation as follows: Let the terminal link c
have magnitude Mc and delay Dc, with an anal-
ogous notation being used for terminal links a
and b. Then from Equation 18 we have

Da = (Ma/Mc)(15/X + Dc) -qX (19)

and

Db = (Mb/MC)(P/X + Dc) - q/X. (20)
When one terminal link is a and the other is
b, then from Equation 17

p(a, b) = [Ma + X (MaDb - MbDa)]/
(Ma + Mb). (21)

Using Equations 19 and 20 to substitute for
Da and Db in Equation 21, it follows that

p(a, b) = (qjMb + pMa)/(Ma + Mb). (22)

Recall that in this equation, p is the allocation
on the initial link leading to c in the deter-
mination of the terminal links a and b. It can
be seen from the equation that when p = .5,
p(a, b) = .5, so in this special case Equation
4 holds. The equation also means that p(a, b)
decreases with a slope (Ma - Mb)/(Ma + Mb)
as p increases (by convention, Ma < Mb). The
parameters of the standard terminal link c do
not influence p(a, b). When Ma = 2 and Mb
= 4, Equation 22 indicates that p(a, b) = .6.
The same answer can be obtained from Equa-
tion 17, if we adopt the convention that ter-
minal link a is now on Side 1 and terminal
link b is on Side 2. This case, together with
further examples are given in Table 2. In every
case, p is not equal to .5 when two members

Table 2

Violation of SST when choice is determined by a form of
matching (Equation 25). Choice when two members of
the set in Table 1 are presented as alternatives, found from
Equation 22. The table shows the relative allocation on
the side leading to the smaller magnitude and the shorter
delay. The members of the set of equivalent terminal links
shown in Table 1 are indicated here by their magnitude.
For further details see text.

4 6 8 10 12 16

2 .60 .65 .68 .70 .71 .73
4 .56 .60 .63 .65 .68
6 .54 .58 .60 .64
8 .53 .56 .60

10 .53 .57
12 .54

of the set of equivalent terminal links are cho-
sen to form a concurrent-chains experiment.
This model shows that violations of SST can
occur in a model based on linear VIs. It follows
that the failure to obtain violations in Vaugh-
an's (1985) model cannot be attributed to his
use of linear VIs.

Independent VIs. In this model the initial
links are independent constant-probability VIs.
The basic matching principle is the same as
in the previous model, but it is necessary to
model the relationship between time allocated
to initial links and entries to terminal links. I
use the Markov switching model proposed by
Heyman (1979). Heyman studied pigeons on
concurrent VI VI and found that stay times
could be described by assuming a constant rate
of switching ,ui from schedule i to the other
schedule. Heyman also found that these
switching rates obeyed the following con-
straint:

A1 + A2 = 1/I, (23)
where I is a constant for a given animal. I has
the dimensions of time. The proportion of time,
p, spent on the initial link of Side 1 is given
by the equation

P = 2/(J1 + A2)
= 1 - 1I. (24)

Houston, Sumida, and McNamara (1987)
applied Heyman's switching model to the con-
current-chains procedure. The model in this
section adopts the same general approach. It
is shown in Appendix 2 that the following
equation for m-atching is obtained when X1 =
X2 = A:
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yM+D = y2+D', (25)

where

Y = (I+p/X)/(1 +XI) (26)
and

Y2 (I + q/X)/(1 + AI). (27)
Equations 25 to 27 give the following equation
for p:
p = [I(M - M2) + M1 + X(1 + AI)

(MlD2- M2Dl)]/(M1 + M2). (28)
When Ml = M2, then for fixed D1, D2 and I,
p tends to .5 as X decreases (i.e., as the variable
interval on the initial links increases). This
means that the model is in qualitative agree-
ment with the effect of initial-link interval re-
ported by Fantino (1969). Equation 28 re-
duces to Equation 17 when I = 0.
As in the case of linear VIs, the matching

condition can be used to obtain an equation
for a set of equivalent terminal links. It follows
from Equation 25 that

D2= (M2/M1)(yl + D1) - Y2* (29)
(Equation 29 has the same form as Equation
18, indeed it reduces to Equation 18 when I
= 0). Following the procedure outlined above,
Equation 29 is used to find a set of terminal
links that are equivalent in terms of choice
against a terminal link with reinforcement
magnitude M1 = 1 and delay D1 = 30 when
X = 1/60 and I =4. This set is shown in Table
1 in the column headed I = 4. To check these
values, note that p = .2 and I = 4, and so,
with X = 1/60, Equations 26 and 27 can be
used to find that Yi = 15 and Y2 = 48.75.
Equation 25 can now be checked by setting
Ml = 1 and D1 = 30 and choosing any member
of the set in Table 1 for the terminal link on
Side 2. Both sides of the equation are approx-
imately equal to .022. If substitutability is to
hold, then the model must result in p = .5 if
any two members of the set shown in Table 1
are used as terminal links. It is shown in Ap-
pendix 2 that the allocation p(a, b), given two
equivalent links a and b, obeys exactly the same
equation as was found in the linear VI case
(i.e., Equation 22). Thus, Table 2 applies for
both models, and hence substitutability does
not hold for this model either.
To summarize this section, a simple model

of matching based on linear VIs produced vi-
olations of SST. A model using the same form
of matching but independent VIs was then
developed, and the simple model was found to
be a special case corresponding to I = 0. Both
models result in exactly the same allocation
when the terminal links are drawn from the
set of equivalent terminal links, and this al-
location is not equal to .5.

A Modified Version of the Delay-Reduction
Hypothesis
The delay-reduction hypothesis says that

choice is proportional to the reduction in time
to reinforcement associated with entering a ter-
minal link. If terminal links are entered as
they are set up, then the expected overall time
T to reinforcement is given by

T = (1 + X1Dj + X2D2)/(X1 + X2). (30)
The reduction in time associated with entering
a terminal link is T minus the appropriate
delay. After simplification, it is found that
T - D1 = [1 + X2(D2 - D1)]/(XI + X2),

and

T - D2 = [1 + XI(Dj - D2)]/(X1 + X2).
The basic delay-reduction hypothesis states that

(T- D1)
(T - D1) + (T - D2)

for D1 and D2 < T; (31)
therefore,

1 + X2(D2- D1)
= 2 + X2(D2- D1) + XI(Dj - D2)

for D1 and D2 < T. (32)

This equation is based on equal reinforcement
magnitudes. Navarick and Fantino (1976)
suggest a modification when these magnitudes
are unequal. One magnitude, say M2, is taken
as a standard, and D1 is transformed to

DI = M2DI/MI. (33)
Navarick and Fantino (1976) point out that

this transformation is based on an arbitrary
decision about which magnitude to take as
the standard; a quantitatively different result
would emerge if the other magnitude was cho-
sen as the standard. To put matters more
strongly, p (a, b) # 1 -p (b, a). In other words,
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changing the labels of the schedules changes
the relative allocation, p. This is clearly not
acceptable as a model of choice. (For com-
pleteness, I have found that substitutability
does not hold in this case.)
An alternative is to modify the basic idea of

delay reduction to one of delay per unit of
magnitude reduction. The following points
support the view that this is a natural exten-
sion of the delay-reduction hypothesis. First,
it reduces to delay reduction when M1 = M2.
Also, the condition p = 1 in Equation 32 gives
a critical value of X1 such that Side 2 is ignored.
This is the same condition for rejecting a less
profitable prey type when prey have equal
magnitude but unequal delays (for further dis-
cussion, see Fantino & Abarca, 1985; Hous-
ton, Sumida, & McNamara, 1987). The mod-
ified delay-reduction hypothesis gives the
standard prey choice condition when p = 1, as
is shown below.
To find the delay per unit of magnitude, we

proceed as follows: The expected overall time
to reinforcement is given by Equation 30. The
corresponding expected reward M is given by

M = (XIMI + X2M2)/(XI + X2). (34)
The basic delay-reduction hypothesis uses the
expected overall time to reinforcement, T, and
the delay remaining on entering a terminal
link. The modified hypothesis uses the overall
delay per unit of magnitude, T/M, and the
delay per unit of magnitude on entering a ter-
minal link. Thus, the reduction on Side 1 is

T/M - DI/MI, (35)
and the reduction on Side 2 is

T/M - D2/M2. (36)
Following the logic of delay reduction, we have

T/M-D1/M1
p=TI -DIM

T/M - D1/M1 + T/M -D2/M2
1 + X2(D2- dl)

2 + X2(D2- dl) + X1(Dl - d2) (37)

where

d, = M2DI/MI (38)
and

d2= MlD2/M2. (39)

Setting p = 1 in Equation 37, we obtain
1 + X1(Dj - d2) = 0,

so that from Equation 39 we have

1/Xl = D2Ml/M2 - D1. (40)

If the magnitudes and delays are thought of
as energetic content of a prey item and asso-
ciated handling time, then Equation 40 is the
equation for a critical value of X1 above which
the rate of energetic gain is maximized by tak-
ing only the type of item with energetic content
M1 and handling time D1. Thus, this modified
version of the delay-reduction hypothesis gen-
eralizes the relation between delay reduction
and optimal prey choice.
When X1 = X2 = X we can use Equation 37

to find a set of terminal links that results in a
certain allocation

A

to the initial link on Side
1. It follows from Equation 37 that

D -4q(M2/MI)D + PD - (1 -2)/X
2 4 + AM1/M2

(41)
where q = 1- A.
An example of a resulting set of equivalent

terminal links is given in Table 3. These values
can be checked from Equations 37 through 39.
Thus when both initial links are VI 60 s and
one terminal link is M = 1, D = 30 and the
other terminal link is M = 2, D = 20.0, the
allocation to the side leading to the M = 1, D
= 30 terminal link is .2. The same allocation
results to this side when the terminal link on
the other side is changed to M = 4, D = 77.73
or to M = 6, D = 136.89 and so forth. If
substitutability is to hold, Equation 4 requires
that if one terminal link is one member of this
set of equivalent links and the other terminal
link is another member of the set, then p must
be .5. Table 4 givesp (from Equation 37) when
members of this set are given as terminal links.
The convention is that the table gives the rel-
ative allocation on the initial link leading to
the smaller magnitude and shorter delay. The
table shows that when one terminal link has
a magnitude of 2 and a delay of 20.0 and the
other has a magnitude of 4 and a delay of
77.73, then the allocation on the initial link
leading to the former terminal link is .70, so
substitutability does not hold. As the difference
in reward magnitude increases (i.e., as we move
along a row) the deviation from .5 increases.
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Table 3
Violation of SST when choice is determined by the mod-
ified delay-reduction hypothesis, as given by Equation 37.
A set of equivalent pairs M2, D2 from Equation 41. All
members of the set result in an allocation of .2 to Side 1
when M, = 1 and DI = 30. X = 1/60.

M2 D2

2 20.0
4 77.7
6 136.8
8 196.4
10 256.1
12 315.9
16 435.7

By following the procedure used to obtain

Equation 22, we can derive an equation for
the allocation when two equivalent terminal
links a and b are used in a concurrent-chains
experiment. (Details are given in Appendix
3.) The resulting equation is

p(a, b) = (1 + zl)/(2 + z1 + Z2), (42)

where

ZI = q(1 - 2p)[(Mb/Ma) -1 ]/(q + PMc/Mb)

* (q + pMc/Ma) (43)
and

Z2= q(l - 2p)[(Ma/Mb) 1]/(q + PMC/Mb)
* (q + PMc/Ma). (44)

Like Equation 22, Equation 42 is independent
of X.

DISCUSSION
The models presented here are not intended

to be complete accounts of allocation in con-

current-chains experiments. The main pur-
pose of the models is to show that a funda-
mentally unidimensional framework can

produce violations of SST. To highlight this
point, these models have been kept simple. In
particular, they do not include a representation
of the variability in the terminal-link delay of
reinforcement. As a result, the models cannot
account for the preference for variable as op-
posed to fixed delays (e.g., Herrnstein, 1964;
Killeen, 1968) nor for intransitivities associ-
ated with fixed and variable delays (e.g., Na-
varick & Fantino, 1972). (Mazur & Coe, 1987,
p. 296, sketch a model that can account for the
effect of variable delays.)

Table 4

Violation of SST when choice is determined by the mod-
ified delay-reduction hypothesis, as given by Equation 37.
Choice when two members of the set in Table 3 are pre-
sented as alternatives, found from Equation 37. Conven-
tions as in Table 2.

4 6 8 10 12 16

2 .70 .80 .85 .88 .90 .93
4 .63 .72 .78 .82 .87
6 .60 .67 .72 .80
8 .58 .64 .73

10 .56 .66
12 .60

The results presented here, together with
those of Houston, Sumida, and McNamara
(1987), show that three different models of
choice on the concurrent-chains procedure can
produce results that satisfy the formal require-
ments of a violation of SST. I use this wording
because, although the models are used in a
way that can be interpreted in terms of the
procedure for testing SST, they actually do not
involve the sort of choice between alternatives
that is usually considered in this context. In
saying that SST is violated, we interpret the
models as making a choice between terminal
links in which each link is characterized by a
value. The models are not based on such a
procedure. Although it is difficult to give an
exact definition of a unidimensional model, all
three models combine the parameters of re-
inforcement magnitude and delay, rather than
treating them separately. Thus, we have a se-
ries of models in which consistent choices on
the basis of a single scale or dimension can
produce results that violate SST. It is instruc-
tive to consider the reasons that underlie these
violations. Houston, Sumida, and McNamara
(1987) showed that the maximization of over-
all rate on concurrent chains could produce
what they called "apparent" violations of SST.
The reason for the violation in this case is that
choice is not determined by a comparison of
the values of the terminal links, but by a com-
parison of the overall consequences of all pos-
sible allocations to the initial links. In the sim-
ple version of matching based on linear VIs
(Equation 16), the equation for relative allo-
cation (Equation 17) does not have the form
of Equation 6 but involves terms that are the
product of the magnitude on one terminal link
and the delay on the other terminal link. This
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feature is also present in the more general
model of matching (Equation 28). In my mod-
ification of the delay-reduction hypothesis, the
relative reduction equations (Equations 35 and
36) involve a comparison of each link with an
overall delay per unit of magnitude. As in the
model based on matching, the equation for
allocation involves terms that are the product
of the magnitude on one terminal link and the
delay on the other terminal link. Thus, in all
of these models, allocation does not give us
some sort of relative value of the terminal links.
Gollub (1977) said that it was naive to regard
the concurrent-chains procedure as giving such
a scaling, but the continuing use of "prefer-
ence" for relative allocation on the initial links
may encourage the belief that relative alloca-
tion corresponds to relative value. There are
empirical and theoretical objections to this be-
lief. For example, Fantino (1969) found that
relative allocation depends on the schedule used
for the initial links, and the analysis of Hous-
ton, McNamara, and Sumida (1987) shows
that relative allocation can change as a result
of changes in the initial links, even if the sub-
ject's behavior at the molecular level does not
change.

Navarick and Fantino (1975, p. 181) say,
"If weak stochastic transitivity were sup-
ported, but functional equivalence were not,
one might posit a single dimension to account
for the direction of preferences (unidimen-
sional model) while positing several dimen-
sions to account for exact choice probabilities
(multidimensional model)." Such a state of af-
fairs is possible, but is it desirable? What would
be the status of the unidimensional model?
Should it not be discarded?

In this paper I have developed an alternative
to the approach suggested by Navarick and
Fantino (1975). I have shown that some es-
sentially unidimensional models can produce
violations of SST. Both models in this paper
involve choice based on a unidimensional scale
but contain an assessment of the concurrent-
chains procedure as a whole, rather than just
the terminal links. What the violations of SST
show is that we cannot find functions, u and
F, that satisfy Equation 5, even if u(a) depends
on the initial link of chain a as well as on the
terminal link. It follows that the violations of
SST enable us to eliminate models of the form
of Equation 6. This indicates that it is not
possible to treat the links in isolation, but this

could be a consequence of the chains proce-
dure. The results of Mazur (1984, 1986) show
that simple unidimensional accounts of choice
can be found in discrete-trials procedures. In
such a procedure, Mazur and Coe (1987) found
trends in the direction predicted by Navarick
and Fantino but found no significant devia-
tions from transitivity. They state, "there was
little evidence for intransitivity of choice: Av-
eraged across subjects and replications, the ob-
tained indifference points deviated from per-
fect transitivity by less than 8%, and these
deviations were not statistically significant"
(Mazur & Coe, 1987, p. 287). Mazur (1984)
suggests that violations of SST may be a spe-
cific result of the chains procedure. One feature
of my models that is unsatisfactory in this con-
text is that allocation when two equivalent
terminal links are presented is independent of
the programmed rate X on the initial links. It
would be intuitively appealing to have the de-
viation from .5 decreased as X increased.

Davison (1987) says, "because of the com-
plex interactions within concurrent chains, a
more gentle movement is required away from
the known (e.g., concurrent VI VI schedules)
into the still relatively unknown concurrent-
chain procedure" (p. 234). It is possible that
Navarick and Fantino (1974) were too pes-
simistic when they wrote, "A major revision
of behavioral theories of choice may be called
for. Ordinal predictions for binary choices may
prove a more realistic and fruitful goal than
the prediction of exact choice probabilities." I
believe that experiments on operant behavior
are ideally suited to the development of models
that predict exact choice probabilities. It should
be possible to build on models based on simple
procedures, incorporating the contingencies of
the chains procedure, to obtain accurate gen-
eral models of choice on a wide range of sched-
ulks.
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APPENDIX 1
Violations of SST in a Version of
Vaughan's Model
In the model of Vaughan (1985), a depends

on whether the terminal link is an FI or a VI.
It might be reasonable, however, to extend this
idea such that a might take on one of a range
of possible values depending on the distribu-
tion that underlies the VI. Now imagine that
we have a standard terminal link c on one side
of the procedure, and denote its value on being
entered by V, and its a by ac. We can find a
terminal link a with parameters V. and aa such
that the allocation to the initial link leading to
c is p. Generalizaing Equation 13, we have

Vc/(X + pac) = Va/(X + qtaa); (A1.1)
therefore,

Va = VJ(X + qaa)/(X + pac). (A1.2)
We can now find another terminal link b that
also results in the same allocation when c is
the other terminal link. Vb is given by the
equation

Vb = Vc(X + qab)/(X + Pac). (A1.3)
Terminal links a and b are equivalent in terms
of allocation relative to c. Substitutability
therefore requires that the relative allocation
is .5 when a is one terminal link and b is the
other terminal link. The following example
shows that substitutability does not hold.



ALASDAIR HOUSTON

Let V, = 1 and a, = .2. Then if the allocation
on the initial link leading to this side is to be
.2, then two possible terminal links a and b on
the other side are given by Va = .2075, aa =
.1 and Vb = .3208, ab = .2. When these two
equivalent terminal links are used in a test of
substitutability, it is found that p(a, b) = .538;
that is, substitutability does not hold.

APPENDIX 2
The Model of Matching

Following Houston, Sumida, and McNa-
mara (1987), it is assumed that switching be-
tween the initial links follows the Markov
model presented by Heyman (1979). A visit
to Side 1 starts when the subject switches from
the initial link on Side 2 to that on Side 1, and
ends when the subject switches back to the
initial link on Side 2. In other words, a visit
to Side 1 may contain entries to the terminal
link on Side 1 but may not contain any time
on the initial link on Side 2. Visits to Side 2
are defined in a similar way. Visits to side i
have a random duration Xi, where Xi has a
negative exponential distribution with mean
duration l/,ui. ui can be thought of as the rate
of switching away from side i. The mean du-
rations are subject to the constraint

Mi + M2 = 1/I (A2.1)
where I is a constant.
The proportion of time, p, spent on the ini-

tial link of Side 1 is given by the equation
p = V/MU/(I/AI + 1/A2)
= A/(MA + M12)- (A2.2)

From Equations A2.1 and A2.2 it follows that

It is easy to modify this equation to include a
changeover delay (see Houston, Sumida, &
McNamara, 1987, for details). By the same
argument,

C2 = X2/(X2 + Al)- (A2.6)
Let E(N,) be the expected number of terminal
links obtained on a visit to side i. Then

E(N,) = c, + Xi/Ai, (A2.7)

and the local rate on side i is E(Nj)M,/(1/Mg
+ E(N1)Di).
Thus, the matching equation that deter-

mines the proportional allocation is

E(Ni)Mi/[1/M1 + E(NI)DI]
= E(N2)M2/[1/M2 + E(N2)D2].

From these equations it follows that

Ml[Xl/(Xl + M2) + Xl/Al]
1/M, + DI[X1/(Xl + M2) + Xl/Mi]

M2[X2/(X2 + MI) + X2/M2]
142 + D2[X2/(X2 + Al) + X2/M2I

(A2.8)

(A2.9)

When XI = X2 = X this equation can be rear-
ranged to

(X + 1M2)/(MiA + M2 + X) + D1X

(X + Mi)/(M1 + M2 + X) + D2X
(A2. 10)

But Ml + MU2 = 1/I (Equation A2.1), and from
Equation A2.3 Ml = q/I, and thus M2 = p/I-
Therefore,

p= l - MiL (A2.3)
During a visit to side i, the expected number
of entires to a terminal link is XZ/MAi. The prob-
ability c- of obtaining a terminal link at the
start of a visit depends on the time that has
been spent away from the side. At the start of
a visit to Side 1, the time that has been spent
away is X2; therefore,

Ml y=+M2
y, + D, Y2 + D2

(A2.1 1)

where

Yi = (I + p/X)/(l + AI) (A2.12)
and

Y2 = (I + q/X)/(1 + XI). (A2.13)
Cl = 1 - E[exp - XiX2] (A2.4) From Equations A2.1 1 to A2.13 it follows that

where E[ ] denotes the expected value of [ ].
Given that X2 has an exponential distribution
with parameter M2, it follows from Equation
A2.4 that

Cl = XA/(XI + M2)(

Ml[(I + q/X)/(1 + XI) + D2]
= MA(I + p/X)/(l + AI) + Dj]. (A2.14)

Substituting 1 - p for q and rearranging, we
find that
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p = [XI(Ml-M2) + M1 +X( + )1
*(MID2- M2D1)]/(MI + M2). (A2.15)

Now consider a standard terminal link c
with parameters Mc and Dc and use Equation
A2.1 1 to find two terminal links a and b that
are equivalent in terms of allocation when c
is the other terminal link. It follows that

Da = (Ma/Mc)(yi + Dj) -Y2 (A2.16)

and

Db = (Mb/MC)(y1 + D,) -Y2. (A2.17)
Applying Equation A2.15 to allocation when
the terminal links are a and b, we have

p(a, b) = [XI(Ma- Mb) + Ma + X(1 + X)
*(MaDb - MbDa)]/(Ma + Mb)-

(A2.18)

Using Equations A2. 16 and A2. 17 to eliminate
Da and Db, it follows that

p(a, b) = (qMb + 'Ma)/(Ma + Mb). (A2.19)
Equation A2.19 is the same as Equation 22,

which gives p(a, b) for the model based on
linear VIs. As is mentioned in the section on
these models, the linear VI model is actually
a special case of the model described here, cor-
responding to I = 0. This can be seen from
the fact that the rate of entry into the terminal
link on side i is E(Nj)/(1/,Mj), so that, in the
case of Side 1, this rate is

(M1AX)/(X1 + IA2) + XI
- (qX,/I)/(X1 + p/I) + Xi
- (qX,/(XII + p) + XA.

It follows that when I = 0, the rate is qX,/p
+ X, = Xl/p, which is the equation for a linear
VI.

APPENDIX 3
Allocation Between Two Equivalent Terminal
Links Under the Modified Delay-Reduction
Hypothesis

Let the standard link c have parameters Mc
and DC and let the required allocation on the
initial link leading to c bep. Then, from Equa-
tion 41,

Da = [(Ma/Mc)Dcq + 6Dc- (1 -2p)/A]/
(q + p6Mc/Ma) (A3.1)

and

Db = [(Mb/Mc)Dcq + IDc
(q + IMc/Mb).

- (1 -2f)/X]/
(A3.2)

When one terminal link is a and the other is
b and XA = X2 = X, then, from Equation 37,
the allocation on the initial link leading to a,
p(a, b) is given by the following equation:

p(a, b) = [1 + X(Db -da)]
[2 + X(Db -da) + X(Da -db)]

where (A3.3)

da = MbDa/Ma (A3.4)
and

db = MaDb/Mb. (A3.5)
Using Equation A3.1 to eliminate Da from
Equation A3.4 and Equation A3.2 to eliminate
Db from Equation A3.5, it is found that

p(a, b) = (1 + zl)/(2 + z1 + Z2),
where

zI = q(1 - 2i)[(Mb/M,) - 1'/
( M+ IMC/Mb) (j + pMc/Ma)

and

Z2 = q(1 - 2f)[(Ma/Mb) - 1 /
(q + 3MC/Mb) (q + Mc/Ma).

(A3.6)

(A3.7)

(A3.8)
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